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1. INTRODUCTION

Tet f(x) be a real or complex-valued continuous function defined on

[—1,1}and let ] )
En(f) = Iljgf Hf—P l\b n = Oa 1’ (11)

where the norm is the sup norm on [—1, 1] and 7, denotes the set of all
polynomials p of degree at most n. Bernstein ([2, p. 118}; see also {5, pp. 76~
78; 6, pp- 90-94]) proved that

lim EY"(f) = 0 (1.2)

if and only if f(x) is the restriction to [—1, 1] of an entire function f(z).
Varga [15] obtained results giving the order and type of this entire function.
Reddy {7, 8] studied the order, the lower order, and the different types
(logarithmic type, lower type), and Juneja [4] studied the lower order. These
authors define the order and the lower order by considering the ratic LM {r)/
Ly (j = 2; see remarks in this section; see also [9, 12; 7, Section 1]). In this
paper we define the generalized order p(w, B, f) and the generalized lower
order A(a, B, f) on any entire function f and extend some known resuits on
entire functions of infinite order. Our definition of p(«, 8, f) is essentially due
to Seremeta ([11: Theorem 1]; see also [1]).

Let L0 denote the class of functions / satisfying the following conditions
(H, i) and (H, 1i);

(H, i) A(x) is defined on [a, o) and is positive strictly increasing, differen-
tiable and tends to oo as x — 0.

(H, i) lim ﬂi}%}“(ﬁ)ﬁ — 1

for every function (x) such that {(x) — oo as x — 0.

315
Copyright © 1977 by Academic Press, Inc.
All rights of reprocduction in any form reserved. ISSIN 0021-9045



316 S. M. SHAH

Let 4 denote the class of functions 4 satisfying conditions (H, i) and (H, iii);

(H, i) fim 22 _

b Zm = b

for every ¢ > 0.

Let f(z) be any entire function and suppose that «(x) € 4, B(x) € L°. Write

plo, B f) _ 1. fsup oflog M(r, f))
Moo o)~ VB linf ~ Bllogr) (1.3)

Then p(, f3, f) is called the generalized order-of fand A(, 3, f) the generalized
lower order of f. If we take «fx) = log x, B(x) = x we get the familiar
definitions of order [3, p. 8; 14, pp. 32-34] and the lower order [16].

Let u(r) denote the maximum term of an entire function f(z) = 3, @,2"
v(r) the rank of u(r) and M(r, f) the maximum modulus. In Theorem 1 we
consider the expressions in {(1.3) when log M(r, f) is replaced by log n(r) and
by »(r); and in Theorem 2 we obtain an inequality between the lower order
Ma, B, f) and an expression involving the coefficient a,, . In Theorem 3 we use
these results to obtain expressions for p(«, 8, f) and A(a, B, f) involving the
approximation error E,( f). We shall assume in Theorems 1--3 that f'is not a
constant function and that a(x) € 4, B(x) e L°.

THEOREM 1. Let f(z) be entire. Set F(x, ¢) = B~ ca(x)), F(x, 1) = F(x).
If for some function Y(x) tending to co (howsoever slowly) as x — ©

Bxy(x))/B(e”) -0, asx—>o0, (1.4)
and if
dF(x)/d(log x) = O(1), as x — o, (1.5)
then _
o allog p(r) _ o ov(r)
pla, B, f) = hH,LiuP “Blogr) lmrl_)iup Bllogr)’ (1.6)
e cllogp(ry . . L au(r)
Ma, B, f) = hrgalonf_ﬁ—(lbg—r)— = hrggonfm. (1.7

THEOREM 2. Let
f(z) = Z anz" (1.8)
7=0

be an entire function. Then (i)

lim inf a()/8 (% log Iz%,l) < Xw B, f). (1.9)
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(i) Assume that | a,/a,.; | is ultimately a nondecreasing function of n
and (1.4) and (1.5) hold. Then there is an equality sign in (1.9).

Remark. If

dF(x,c)
dlog x)

o), x-—» oo, (1.10)

for every ¢ > 0, then Seremeta [11] has shown that

p(a, B, f) = lim sup o(n)/8 (- log

). (.11

! '
t H
Can

TueoreM 3. Let f(x)e C[—1,1] and let E,(f) be defined by (1.1).
Suppose (1.2) holds. Then f(x) is the restriction to [—1, 1] of an entire function

f (@) and (i)

X B, f) > lim inf o(n)/B (% log E%j) (1.12)

(1) Assume also (1.10) and (1.4). Then

plas B, £) = lim sup (/B (108 55 (1.13)

(iii) Assume further that E,(f)/E,.(f) is ultimately a nondecreasing
Junction of n. Then there is an equality sign in (1.12).

Remarks. Let [x denote the kth iterate of the logarithm: /x = log x,
hx = log(h_sx) (k = 2).

() Let afx) =logx, B(x) = x, $(x) = Lx (k >=2). Then F(x, }) =
log x, the hypotheses of Theorem 1 are satisfied and we get another proof of
Whittaker’s theorem [16, Theorem 1].

(ii) If we take a(x) = log x, B(x) = x, we see that Theorem 2 gives
extensions of parts of Theorems 1 and 2 of [i12].

(i) Let ofx) =1lox, B(x) =logx(k =1) then aecd, fel’ and
Theorem 3 gives extensions of a theorem of Varga [15, Theorem 1] and some
theorems of Reddy [7; Theorems 1, 2A, 2B]. Note that (1.13) holds whether
o(a, B, f) s finite or infinite. If it is infinite then Theorem 3(ii) implies that the
right-side expression in (1.13) is infinite and conversely. A similar remark
applies to (1.6), (1.7), part (ii) of Theorem 2 and part (iil) of Theorem 3.

(iv) By appropriate choices of «(x), B{x) we get some resulis, proved in
{10, 13], from Theorems 1 and 2.
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2. PROOF OF THEOREM 1

Write

0, . {sup olog p(r))
g~ P2 linf "~ Blogr)
O .. fsup o(¥(r))

4, — Mm ginf Bllog 1) *

We prove 0, = 85, ¢, = ¢ in parts (a), (b) and then complete the rest in
(c) and (d). We shall abbreviate, in Theorems 1 and 2, p(«, 8, f) to p and

M, Igaf) to A.
If fis a polynomial then 0; = ¢ = 0, and using (1.4) we see that 8, —

¢y = p = A = 0. So we assume that f'is a transcendental entire function.

(a) Since [3, pp. 12-13; 14, pp. 28-32]
log u(2r) > v(r) log 2,

and B e L° we get 0, > 0,, dy = 5.

(b) To prove ¢, < ¢, we may assume that ¢, << co. Given € > 0, there
exists an indefinitely increasing sequence {r,} such that for n > nye),

a(v(r,))/B (log ry) < 5 + e @.1)

Let () = ¢ (log log r) and let n; > n, be so large that ;(r) is defined and
positive for r > r, . Let

= {rn | n > ny, F(u(ry)) < (loglogr,) ¥y (r)}-
Then for r = r, € E,
aflog pr)) — a(v(r)) _ (1 + o(1)) a((r) logr) — o(w(r))

B(log r) B(log r)

_ (A + o(1)) BEX(r) log r)) — BE(T))
B(log )

- (L4 o(1) BE@(r)) 4 Aloglogr)
B(logr)

< (4 0()) B + o())log log r) #(r))
B(log r)

= o(1) as r == r,(e E) — oo.
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For r =r,e CE, (n > ny),

. Aloglogr ,
sllog ur) — atetry _ (OB OO (1 TRt)) — a0
Blogr) Aoz )
_ (14 0(1) BFG) — a(v(r)
Blogr) '
(L o(1) a(e(r)) — (6(r)
Bllog )

< o(1)($s + € = o(1)

and so ¢, < &, . Note that if £ (or cE) has only a finite number of elements
then we need consider cE (resp. E) only. The above argument gives also
8, < 8, , if we consider all » > ry(¢) such that

a(v(r)/Bllogr) < 05 + e,

and define E={r|r >r,F@) < (oglogr} J{r)}. Hence 8, =6,,
¢2 ¢3

{(c) Since alog M(r) = aflog u(r)), we have
p=0y, Ay

(d) We now prove p << 0,, A << ¢, . Since [14, pp. 28-32]

M) < 3p0) (r o yis). >
log u(2er) > v(2r),
we have
log ¥(2r) = o(1)(log p(2er)), 22)
log M(r) < log 3 + log u(r) + log v(2r) < (1 + o(1)) log u(2er).

Since B € L°, o € A it follows that p < 8, . To prove A < ¢, , assume ¢, << cO
and let in (2.2) 2er = r, where {r,} is such that a(log p(rn))/ﬁ(log ) tends to
¢, as n — co. Then (2.2) implies that A < ¢, . The theorem is proved.

3. PrROOF OF THEOREM 2

Write

)\0 n-x

= lim gf P a(n)/ﬂ( log \al )
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(i) If fis a polynomial then p; = Ay = p = A = 0 and so we assume f
to be a transcendental entire function. We prove A, <X A. We may assume
A < 0. Given € > 0, there exists a sequence {r,}; such that forr = r,,

alog M(r)) < (A + €) plog r),

M(r) < exp{a (A + ¢) B(log r))}.
By Cauchy inequality

that is

| a | < M(r)/r¥,
we get forr =r, and each k >0
| a| < exp {oa=((A + €) B((log M)}/r*.

Choose k = [ (A + €) B((log r,))], where [x] denotes the integer part
of x. Then

(A + ¢) Blogr)) — 1 <k < aY(A + ¢) Blog ), G.D

and
lakl < e(k-lvl)/eklogrﬂ‘

Hence

Llog]_l_ > (log 7, — (1 + o(1)) = (1 + o(1) log 7,

|
(1B (108 ) < (1 + o(1) a)fllog ) < (1-+ o)A+ o)

where we have used (3.1). Hence A, << A

(i) Set &) = | anf@pi1 |- Then £(m) — oo and &(n) > &(n — 1) for an
infinity of # (see cf. [13]). When £(n) > &(n — 1), we have u(r) = | a, | ",
vir) =nforfn — 1) < r < &m).

Given € >0, write A =X — ¢ if A << 00, A = H (an arbritarily large
constant) if A= co. Then for r > Ry, = Ry(e), v(r) > a2 (AB(logr)). Let
|z|=7r> Ry and let a,, 2™, @,z , (§(my — 1) > R,) be two consecutive
maximum terms. Then m, < < my — 1. Let my <<n < m,. Then v(r) = m, for
Emy — 1) <r < &my). So

my = u(r) > a{(AB(log r)) = « ! (AB(log(é(my) — d)))

where d is a constant such that 0 < d < min{l, (¢(m,) — &Gmy — 1))/2}.
Further £(m,) = &(my + 1) = -+ = &(n — 1). Hence (writing a(m) for a,,)

o+ 1) - 60 — 1) = | XD | < (gn —
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and so
log - < o(1) -+ log £0m) < (1 + o(1) BHam)/M)
< (1 + o(1)) BHalm)/).
Consequently

A < (1 + o(1) an)/B (% log ; |)

and so A <{ Ay . The proof is complete.

4, PROOF OF THEOREM 3

Denote the expression on the right of (1.13) by p, and that on the right of
(1.12) by A,. By hypothesis (1.2) f(z) and g(z) = 3o E.(f) z" are entire
functions. As in Theorem 2, we may assume that f'is not a polynomial. This
assumption implies that gisnot a polynomial. Now [5, p. 76-78; 15]forr > 1
and n = 0,

2B(r)
Ef) < m >
where
r2—1 r2 41 )
M= f) < BO < M(F—.f), r>1 @D
Consequently forr >3 and n > 0
E,(f) < M(r, f))r. 4.2)

Further

Br) < cy+2r Y EF)

k=0

where ¢, is a positive constant. Hence for » == 3,

M (5. f) < e+ 2rMr, 9)
and so for all large »
M(r, ) < IrMQ@3r, g)
and

olog M(r,f)) _ (1 + o(1)) log M(3r, g))
Blogry B(log r)
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Since € LY, we have

Mo B, f) < Mo, B, 8); plo B, f) < plo, B, 8). 4.3)

(i) We prove (1.12). Assume, as we may, that Ay > 0. Write A = A, — €
if A4y << 00, A = H if Ay = oo, Then for all z > #n,,

E() <L st >B(;loe s 55)

that is,

E(f) > 1/exp gnﬁ—l (@)

Let r, = exp{l + B~Y«(n)/A)}. By (4.2) we have for r, <r <r, ., (n > ny,
r>3)
M(r,f) = rmE(f) = r,"E(f) > expn,

and
oflog M(r, f)) . om) __ (14 o(1)) a(m)
plogr) = Blogray) aon -+ 1) 7
Hence
Ao < M, B, f)- 4.4
(ii.a) By (4.2) we have for r = 3
p(r, 8) < M(r, f); 4.5)
and (1.6), (1.7), (4.3), and (4.5) imply that
A(OC’ B:f) = A(“: /85 g): P(“’ ﬂaf) = P(Ol, ﬁ: g) (46)

(ii.b) Since [11; Theorem 1] p(x, B, g) = py , (1.13) follows from (4.6).
(iii) By Theorem 2(ii) and (4.6), A, = A(x, B, &) = Aa, B, f).

The proof is complete.

5. THEOREMS 4 AND 5

In what follows we extend B(x) over (— oo, @) so that B(x) is nonnegative,
nondecreasing, and continuous over (— oo, a]. (The constant ¢ in (H, i) is
throughout a positive number.) We assume (1.4) and (1.10). (The condition
(1.4) assures that the growth of 8 is not “too slow.”) We denote by {#,} a
strictly increasing sequence of positive integers. For convenience of notation
we sometimes write a(n) for a,, .



APPROXIMATION OF AN ENTIRE FUNCTION 323

THrOREM 4. Let f be a transcendental entire function defined by (1.8) and

let E = E(f) denote the sequence of positive integers {n,)y such that max
{| arp_D!, | e} > 0 for k = 2, 3,.... Then

Mo, B, ) = sup zhm inf oy, 1)//3( log —a—(iﬁ)g’ (5.1
Mo B.f) = sup. 311m inf or) /B — ;"é’z”;)l) )f (5.2)

{n}eE

where supremum, in (5.1), is taken over all sequences {n,}, and in (5.2) over all
sequences {n;; € E.

Proof. Denocte by Ay = A({n:}) the expression in curly brackets on the
right in {5.1) and by A, = A ({n,}) the similar expression in (5.2). Write
A= Ma, B, f).

(@) If {m} € E then M({ni}) < A({mi}).

To prove (i} we may suppose Ay > 0. Then | a(n,)| > Oforn, c E, k > k.

Write § = N\, — eif Ay < 00, § = Hif A\ = 0. Then for Ny, < N < M,

M

< Y (ny — my_y) B ( Oé(néc_i})

k=N

§ g |20

< Bt ( Oc(ng[al) ) (pr — 1wy,

- Hence
1 1 o i)
(1o (- tog ) < £ ()
and (i) follows.
(i) If {ny} is the range of v(r, [), then A = \{({n).
Let

1/(ng—ng_q)

a(ny—y)
1) = ’ afny)

(k> k).

Then for n(ny) <r < p(mr), plr, f) = | a(ny)| #™, o(r, ) = ny, . Further

() < mlng + 1 = -+ = n(ne.4). In the interval (n(m), (1, - 1)), «(w(#))/
" B(log r) | and
A = lim inf 20D _ iy ; om)

= limin
re - Blogr) 15’{10g(77(nk + D —H
where 4 > 0 is sufficiently small. We now use (H, ii) and obtain (ii).

(iii) For any sequence {n}, A/({n}) < A
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The proof is similar to that of Theorem 2(i) and omitted.

The theorem follows from (i)-(iii).

THEOREM 5. Let f(x) € C[—1, 1] and suppose that f(x) is not a polynomial

and (1.2) holds. Then f(x) is the restriction to [—1, 1] of an entire function f(z)
and

10.

11.

12.

13.

14.

15.

16.

)‘(O‘: B9f) = sup

{'ﬂk}

lirlggonf oty _1) / B (7}7 log ME_(];J)

. . 1 E(ny_y)
= sup [l inf ol ) B (- ——log | 3

)

The proof follows immediately from (4.6) and Theorem 4 and is omitted.
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