Polynomial Approximation of an Entire Function and Generalized Orders

S. M. Shah

Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506 Communicated by Oved Shisha Received January 31, 1975

1. INTRODUCTION

Let f(x) be a real or complex-valued continuous function defined on [-1, 1] and let

$$E_n(f) = \inf_{p \in \pi_n} ||f - p||, \quad n = 0, 1, \dots$$
(1.1)

where the norm is the sup norm on [-1, 1] and π_n denotes the set of all polynomials p of degree at most n. Bernstein ([2, p. 118]; see also [5, pp. 76–78; 6, pp. 90–94]) proved that

$$\lim_{n \to \infty} E_n^{1/n}(f) = 0 \tag{1.2}$$

if and only if f(x) is the restriction to [-1, 1] of an entire function f(z). Varga [15] obtained results giving the order and type of this entire function. Reddy [7, 8] studied the order, the lower order, and the different types (logarithmic type, lower type), and Juneja [4] studied the lower order. These authors define the order and the lower order by considering the ratio $l_j M(r)/l_1 r$ ($j \ge 2$; see remarks in this section; see also [9, 12; 7, Section 1]). In this paper we define the generalized order $\rho(\alpha, \beta, f)$ and the generalized lower order $\lambda(\alpha, \beta, f)$ on any entire function f and extend some known results on entire functions of infinite order. Our definition of $\rho(\alpha, \beta, f)$ is essentially due to Seremeta ([11: Theorem 1]; see also [1]).

Let L^0 denote the class of functions h satisfying the following conditions (H, i) and (H, ii);

(H, i) h(x) is defined on $[a, \infty)$ and is positive strictly increasing, differentiable and tends to ∞ as $x \to \infty$.

(H, ii)
$$\lim_{x \to \infty} \frac{h((1 + 1/\psi(x))x)}{h(x)} = 1,$$

for every function $\psi(x)$ such that $\psi(x) \to \infty$ as $x \to \infty$.

Let Λ denote the class of functions h satisfying conditions (H, i) and (H, iii);

(H, iii)
$$\lim_{x \to \infty} \frac{h(cx)}{h(x)} = 1,$$

for every c > 0.

Let f(z) be any entire function and suppose that $\alpha(x) \in A$, $\beta(x) \in L^0$. Write

$$\rho(\alpha, \beta, f) = \lim_{r \to \infty} \left\{ \sup_{r \to \infty} \frac{\alpha(\log M(r, f))}{\beta(\log r)} \right\}.$$
(1.3)

Then $\rho(\alpha, \beta, f)$ is called the generalized order of f and $\lambda(\alpha, \beta, f)$ the generalized lower order of f. If we take $\alpha(x) = \log x, \beta(x) = x$ we get the familiar definitions of order [3, p. 8; 14, pp. 32–34] and the lower order [16].

Let $\mu(r)$ denote the maximum term of an entire function $f(z) = \sum_{n=0}^{\infty} a_n z^n$, $\nu(r)$ the rank of $\mu(r)$ and M(r, f) the maximum modulus. In Theorem 1 we consider the expressions in (1.3) when log M(r, f) is replaced by log $\mu(r)$ and by $\nu(r)$; and in Theorem 2 we obtain an inequality between the lower order $\lambda(\alpha, \beta, f)$ and an expression involving the coefficient a_n . In Theorem 3 we use these results to obtain expressions for $\rho(\alpha, \beta, f)$ and $\lambda(\alpha, \beta, f)$ involving the approximation error $E_n(f)$. We shall assume in Theorems 1–3 that f is not a constant function and that $\alpha(x) \in \Lambda, \beta(x) \in L^0$.

THEOREM 1. Let f(z) be entire. Set $F(x, c) = \beta^{-1}(c\alpha(x))$, F(x, 1) = F(x). If for some function $\psi(x)$ tending to ∞ (howsoever slowly) as $x \to \infty$

$$\beta(x\psi(x))/\beta(e^x) \to 0, \quad as \ x \to \infty,$$
 (1.4)

and if

$$dF(x)/d(\log x) = O(1), \quad \text{as } x \to \infty, \tag{1.5}$$

then

$$\rho(\alpha, \beta, f) = \limsup_{r \to \infty} \frac{\alpha(\log \mu(r))}{\beta(\log r)} = \limsup_{r \to \infty} \frac{\alpha(\nu(r))}{\beta(\log r)}, \qquad (1.6)$$

$$\lambda(\alpha,\beta,f) = \liminf_{r \to \infty} \frac{\alpha(\log \mu(r))}{\beta(\log r)} = \liminf_{r \to \infty} \frac{\alpha(\nu(r))}{\beta(\log r)}.$$
 (1.7)

THEOREM 2. Let

$$f(z) = \sum_{n=0}^{\infty} a_n z^n \tag{1.8}$$

be an entire function. Then (i)

$$\liminf_{n\to\infty} \alpha(n)/\beta\left(\frac{1}{n}\log\frac{1}{|a_n|}\right) \leqslant \lambda(\alpha,\beta,f).$$
(1.9)

(ii) Assume that $|a_n/a_{n+1}|$ is ultimately a nondecreasing function of n and (1.4) and (1.5) hold. Then there is an equality sign in (1.9).

Remark. If

$$\frac{dF(x,c)}{d(\log x)} = O(1), \qquad x \to \infty, \tag{1.10}$$

for every c > 0, then Seremeta [11] has shown that

$$\rho(\alpha, \beta, f) = \limsup_{n \to \infty} \alpha(n) / \beta \left(\frac{1}{n} \log \frac{1}{|a_n|} \right).$$
(1.11)

THEOREM 3. Let $f(x) \in C[-1, 1]$ and let $E_n(f)$ be defined by (1.1). Suppose (1.2) holds. Then f(x) is the restriction to [-1, 1] of an entire function f(z) and (i)

$$\lambda(\alpha, \beta, f) \ge \liminf_{n \to \infty} \alpha(n) / \beta \left(\frac{1}{n} \log \frac{1}{E_n(f)} \right).$$
(1.12)

(ii) Assume also (1.10) and (1.4). Then

$$\rho(\alpha, \beta, f) = \limsup_{n \to \infty} \alpha(n) / \beta \left(\frac{1}{n} \log \frac{1}{E_n(f)} \right).$$
(1.13)

(iii) Assume further that $E_n(f)/E_{n+1}(f)$ is ultimately a nondecreasing function of n. Then there is an equality sign in (1.12).

Remarks. Let $l_k x$ denote the kth iterate of the logarithm: $l_1 x = \log x$, $l_k x = \log(l_{k-1}x)$ ($k \ge 2$).

(i) Let $\alpha(x) = \log x$, $\beta(x) = x$, $\psi(x) = l_k x$ $(k \ge 2)$. Then $F(x, 1) = \log x$, the hypotheses of Theorem 1 are satisfied and we get another proof of Whittaker's theorem [16, Theorem 1].

(ii) If we take $\alpha(x) = \log x$, $\beta(x) = x$, we see that Theorem 2 gives extensions of parts of Theorems 1 and 2 of [12].

(iii) Let $\alpha(x) = l_k x, \beta(x) = \log x \ (k \ge 1)$ then $\alpha \in A, \beta \in L^0$ and Theorem 3 gives extensions of a theorem of Varga [15, Theorem 1] and some theorems of Reddy [7; Theorems 1, 2A, 2B]. Note that (1.13) holds whether $\rho(\alpha, \beta, f)$ is finite or infinite. If it is infinite then Theorem 3(ii) implies that the right-side expression in (1.13) is infinite and conversely. A similar remark applies to (1.6), (1.7), part (ii) of Theorem 2 and part (iii) of Theorem 3.

(iv) By appropriate choices of $\alpha(x)$, $\beta(x)$ we get some results, proved in [10, 13], from Theorems 1 and 2.

S. M. SHAH

2. PROOF OF THEOREM 1

Write

$$\begin{aligned} & \theta_2 \\ & \phi_2 = \lim_{r \to \infty} \left\{ \sup_{inf} \frac{\alpha(\log \mu(r))}{\beta(\log r)} \right\}, \\ & \theta_3 \\ & \phi_3 = \lim_{r \to \infty} \left\{ \sup_{inf} \frac{\alpha(\nu(r))}{\beta(\log r)} \right\}. \end{aligned}$$

We prove $\theta_2 = \theta_3$, $\phi_2 = \phi_3$ in parts (a), (b) and then complete the rest in (c) and (d). We shall abbreviate, in Theorems 1 and 2, $\rho(\alpha, \beta, f)$ to ρ and $\lambda(\alpha, \beta, f)$ to λ .

If f is a polynomial then $\theta_3 = \phi_3 = 0$, and using (1.4) we see that $\theta_2 = \phi_2 = \rho = \lambda = 0$. So we assume that f is a transcendental entire function.

(a) Since [3, pp. 12–13; 14, pp. 28–32]

$$\log \mu(2r) > \nu(r) \log 2,$$

and $eta\in L^0$, we get $heta_2\geqslant heta_3$, $\phi_2\geqslant \phi_3$.

(b) To prove $\phi_2 \leq \phi_3$ we may assume that $\phi_3 < \infty$. Given $\epsilon > 0$, there exists an indefinitely increasing sequence $\{r_n\}$ such that for $n > n_0(\epsilon)$,

$$\alpha(\nu(r_n))/\beta (\log r_n) < \phi_3 + \epsilon. \tag{2.1}$$

Let $\psi_1(r) = \psi$ (log log r) and let $n_1 > n_0$ be so large that $\psi_1(r)$ is defined and positive for $r > r_{n_1}$. Let

$$E = \{r_n \mid n > n_1, F(\nu(r_n)) \leq (\log \log r_n) \psi_1(r_n)\}.$$

Then for $r = r_n \in E$,

$$\frac{\alpha(\log \mu(r)) - \alpha(\nu(r))}{\beta(\log r)} < \frac{(1+o(1))\alpha(\nu(r)\log r) - \alpha(\nu(r))}{\beta(\log r)}$$
$$= \frac{(1+o(1))\beta(F(\nu(r)\log r)) - \beta(F(\nu(r)))}{\beta(\log r)}$$
$$< \frac{(1+o(1))\beta(F(\nu(r)) + A\log\log r)}{\beta(\log r)}$$
$$\leq \frac{(1+o(1))\beta((1+o(1))(\log\log r)\psi_1(r))}{\beta(\log r)}$$
$$= o(1) \quad \text{as} \quad r = r_n (\in E) \to \infty.$$

For
$$r = r_n \in CE$$
, $(n > n_1)$,

$$\frac{\alpha(\log \mu(r)) - \alpha(\nu(r))}{\beta(\log r)} \leqslant \frac{(1 + o(1))\beta\left(F(\nu(r))\left(1 + \frac{A\log\log r}{F(\nu(r))}\right)\right) - \alpha(\nu(r))}{\beta(\log r)}$$

$$= \frac{(1 + o(1))\beta(F(\nu(r)) - \alpha(\nu(r)))}{\beta(\log r)}$$

$$= \frac{(1 + o(1))\alpha(\nu(r)) - \alpha(\nu(r))}{\beta(\log r)}$$

$$\leqslant o(1)(\phi_3 + \epsilon) = o(1)$$

and so $\phi_2 \leqslant \phi_3$. Note that if E (or cE) has only a finite number of elements then we need consider cE (resp. E) only. The above argument gives also $\theta_2 \leqslant \theta_3$, if we consider all $r > r_0(\epsilon)$ such that

$$\alpha(\nu(r))/\beta(\log r) < \theta_3 + \epsilon,$$

and define $E = \{r \mid r > r_1, F(\nu(r)) \leq (\log \log r) \psi_1(r)\}$. Hence $\theta_2 = \theta_3$, $\phi_2 = \phi_3$.

(c) Since $\alpha(\log M(r)) \ge \alpha(\log \mu(r))$, we have

$$ho \geqslant heta_2$$
 , $\lambda \geqslant \phi_2$.

(d) We now prove $ho \leqslant heta_2$, $\lambda \leqslant \phi_2$. Since [14, pp. 28–32]

$$M(r)\leqslant 3\mu(r)
u\left(r+rac{r}{
u(r)}
ight), \qquad r>r_{0}\,,$$
log $\mu(2er)>
u(2r),$

we have

$$\log \nu(2r) = o(1)(\log \mu(2er)),$$

$$\log M(r) \le \log 3 + \log \mu(r) + \log \nu(2r) \le (1 + o(1)) \log \mu(2er).$$
 (2.2)

Since $\beta \in L^0$, $\alpha \in \Lambda$ it follows that $\rho \leq \theta_2$. To prove $\lambda \leq \phi_2$, assume $\phi_2 < \infty$ and let in (2.2) $2er = r_n$ where $\{r_n\}$ is such that $\alpha(\log \mu(r_n))/\beta(\log r_n)$ tends to ϕ_2 as $n \to \infty$. Then (2.2) implies that $\lambda \leq \phi_2$. The theorem is proved.

3. PROOF OF THEOREM 2

Write

$${}^{\boldsymbol{\rho_0}}_{\lambda_0} = \lim_{n \to \infty} \left\{ \sup_{n \neq \infty} \alpha(n) / \beta \left(\frac{1}{n} \log \frac{1}{|a_n|} \right) \right\}$$

(i) If f is a polynomial then $\rho_0 = \lambda_0 = \rho = \lambda = 0$ and so we assume f to be a transcendental entire function. We prove $\lambda_0 \leq \lambda$. We may assume $\lambda < \infty$. Given $\epsilon > 0$, there exists a sequence $\{r_n\}_1^{\infty}$ such that for $r = r_n$,

$$\alpha(\log M(r)) < (\lambda + \epsilon) \beta(\log r),$$

that is

$$M(r) < \exp\{\alpha^{-1}((\lambda + \epsilon)\beta(\log r))\}$$

By Cauchy inequality

$$|a_k| \leq M(r)/r^k$$
,

we get for $r = r_n$ and each $k \ge 0$,

$$|a_{k}| < \exp \{ \alpha^{-1} ((\lambda + \epsilon) \beta((\log r))) \} / r^{k}.$$

Choose $k = [\alpha^{-1}((\lambda + \epsilon) \beta((\log r_n))]$, where [x] denotes the integer part of x. Then

$$\alpha^{-1}((\lambda + \epsilon) \beta(\log r_n)) - 1 < k \leq \alpha^{-1}((\lambda + \epsilon) \beta(\log r_n)), \quad (3.1)$$

and

$$|a_k| \leqslant e^{(k+1)}/e^{k\log r_n}.$$

Hence

$$\frac{1}{k}\log\frac{1}{|a_k|} \ge (\log r_n - 1)(1 + o(1)) = (1 + o(1))\log r_n,$$

$$\alpha(k)/\beta\left(\frac{1}{k}\log\frac{1}{|a_k|}\right) \le (1 + o(1))\alpha(k)/\beta(\log r_n) \le (1 + o(1))(\lambda + \epsilon),$$

where we have used (3.1). Hence $\lambda_0 \leq \lambda$.

(ii) Set $\xi(n) = |a_n/a_{n+1}|$. Then $\xi(n) \to \infty$ and $\xi(n) > \xi(n-1)$ for an infinity of *n* (see cf. [13]). When $\xi(n) > \xi(n-1)$, we have $\mu(r) = |a_n| r^n$, $\nu(r) = n$ for $\xi(n-1) \leq r < \xi(n)$.

Given $\epsilon > 0$, write $\lambda = \lambda - \epsilon$ if $\lambda < \infty$, $\lambda = H$ (an arbitarily large constant) if $\lambda = \infty$. Then for $r > R_0 = R_0(\epsilon)$, $\nu(r) > \alpha^{-1}(\lambda\beta(\log r))$. Let $|z| = r > R_0$ and let $a_{m_1} z^{m_1}$, $a_{m_2} z^{m_2}$, $(\xi(m_1 - 1) > R_0)$ be two consecutive maximum terms. Then $m_1 \leq m_2 - 1$. Let $m_1 < n \leq m_2$. Then $\nu(r) = m_1$ for $\xi(m_1 - 1) \leq r < \xi(m_1)$. So

$$m_1 = \nu(r) > \alpha^{-1}(\lambda\beta(\log r)) \geqslant \alpha^{-1}(\lambda\beta(\log(\xi(m_1) - d)))$$

where *d* is a constant such that $0 < d < \min\{1, (\xi(m_1) - \xi(m_1 - 1))/2\}$. Further $\xi(m_1) = \xi(m_1 + 1) = \dots = \xi(n - 1)$. Hence (writing *a*(*m*) for *a_m*)

$$\xi(n_0+1)\cdots\xi(n-1) = \left|\frac{a(n_0+1)}{a(n)}\right| \leq (\xi(n-1))^{n-n_0-1}$$

320

and so

$$\frac{1}{n}\log\frac{1}{|a_n|} < o(1) + \log \xi(m_1) \le (1 + o(1)) \beta^{-1}(\alpha(m_1)/\lambda)$$
$$\le (1 + o(1)) \beta^{-1}(\alpha(n)/\lambda).$$

Consequently

$$\lambda \leqslant (1+o(1)) \alpha(n)/\beta\left(\frac{1}{n}\log\left(\frac{1}{|a_n|}\right)\right)$$

and so $\lambda \leq \lambda_0$. The proof is complete.

4. PROOF OF THEOREM 3

Denote the expression on the right of (1.13) by ρ_0 and that on the right of (1.12) by λ_0 . By hypothesis (1.2) f(z) and $g(z) = \sum_{n=0}^{\infty} E_n(f) z^n$ are entire functions. As in Theorem 2, we may assume that f is not a polynomial. This assumption implies that g is not a polynomial. Now [5, p. 76–78; 15] for r > 1 and $n \ge 0$,

$$E_n(f) \leqslant \frac{2B(r)}{r^n(r-1)},$$

where

$$M\left(\frac{r^2-1}{2r},f\right) \leqslant B(r) \leqslant M\left(\frac{r^2+1}{2r},f\right), \quad r>1.$$
 (4.1)

Consequently for $r \ge 3$ and $n \ge 0$

$$E_n(f) \leqslant M(r, f)/r^n. \tag{4.2}$$

Further

$$B(r) \leqslant c_0 + 2r \sum_{k=0}^{\infty} E_k(f) r^k,$$

where c_0 is a positive constant. Hence for $r \ge 3$,

$$M\left(\frac{r}{3},f\right) \leqslant c_0 + 2rM(r,g)$$

and so for all large r

$$M(r,f) \leq 9rM(3r,g)$$

and

$$\frac{\alpha(\log M(r,f))}{\beta(\log r)} \leq \frac{\alpha((1+o(1))\log M(3r,g))}{\beta(\log r)}.$$

Since $\beta \in L^0$, we have

$$\lambda(\alpha,\beta,f) \leqslant \lambda(\alpha,\beta,g); \quad \rho(\alpha,\beta,f) \leqslant \rho(\alpha,\beta,g). \tag{4.3}$$

(i) We prove (1.12). Assume, as we may, that $\lambda_0 > 0$. Write $\lambda = \lambda_0 - \epsilon$ if $\lambda_0 < \infty$, $\lambda = H$ if $\lambda_0 = \infty$. Then for all $n > n_0$,

$$E_n(f) < 1, \qquad \alpha(n)/\lambda > \beta\left(\frac{1}{n}\log\frac{1}{E_n(f)}\right),$$

that is,

$$E_n(f) > 1/\exp\left\{n\beta^{-1}\left(\frac{\alpha(n)}{\lambda}\right)\right\}.$$

Let $r_n = \exp\{1 + \beta^{-1}(\alpha(n)/\lambda)\}$. By (4.2) we have for $r_n \leq r \leq r_{n+1}$ $(n > n_0, r > 3)$

$$M(r,f) \ge r^n E_n(f) \ge r_n^n E_n(f) > \exp n,$$

and

$$\frac{\alpha(\log M(r,f))}{\beta(\log r)} \ge \frac{\alpha(n)}{\beta(\log r_{n+1})} = \frac{(1+o(1))\,\alpha(n)\lambda}{\alpha(n+1)}\,.$$

Hence

$$\lambda_0 \leqslant \lambda(\alpha, \beta, f). \tag{4.4}$$

(ii.a) By (4.2) we have for $r \ge 3$

$$\mu(r,g) \leqslant M(r,f); \tag{4.5}$$

and (1.6), (1.7), (4.3), and (4.5) imply that

$$\lambda(\alpha,\beta,f) = \lambda(\alpha,\beta,g); \qquad \rho(\alpha,\beta,f) = \rho(\alpha,\beta,g). \tag{4.6}$$

(ii.b) Since [11; Theorem 1] $\rho(\alpha, \beta, g) = \rho_0$, (1.13) follows from (4.6).

(iii) By Theorem 2(ii) and (4.6), $\lambda_0 = \lambda(\alpha, \beta, g) = \lambda(\alpha, \beta, f)$.

The proof is complete.

5. Theorems 4 and 5

In what follows we extend $\beta(x)$ over $(-\infty, a)$ so that $\beta(x)$ is nonnegative, nondecreasing, and continuous over $(-\infty, a]$. (The constant a in (H, i) is throughout a positive number.) We assume (1.4) and (1.10). (The condition (1.4) assures that the growth of β is not "too slow.") We denote by $\{n_k\}$ a strictly increasing sequence of positive integers. For convenience of notation we sometimes write a(n) for a_n . THEOREM 4. Let f be a transcendental entire function defined by (1.8) and let E = E(f) denote the sequence of positive integers $\{n_k\}_1^\infty$ such that max $\{|a(n_{k-1})|, |a(n_k)|\} > 0$ for k = 2, 3, ... Then

$$\lambda(\alpha,\beta,f) = \sup_{\{n_k\}} \left\{ \liminf_{k \to \infty} \alpha(n_{k-1}) \Big/ \beta\left(\frac{1}{n_k} \log \frac{1}{|a(n_k)|}\right) \right\},\tag{5.1}$$

$$\lambda(\alpha,\beta,f) = \sup_{\substack{\{n_k\}\in E\\\{n_k\}\in E}} \left\{ \liminf_{\substack{k\to\infty\\\{n_k\}\in E}} \alpha(n_{k-1}) \middle/ \beta\left(\frac{1}{n_k - n_{k-1}} \log\left|\frac{a(n_{k-1})}{a(n_k)}\right| \right) \right\}, (5.2)$$

where supremum, in (5.1), is taken over all sequences $\{n_k\}$, and in (5.2) over all sequences $\{n_k\} \in E$.

Proof. Denote by $\lambda_0 = \lambda_0(\{n_k\})$ the expression in curly brackets on the right in (5.1) and by $\lambda_1 = \lambda_1(\{n_k\})$ the similar expression in (5.2). Write $\lambda = \lambda(\alpha, \beta, f)$.

(i) If
$$\{n_k\} \in E$$
 then $\lambda_1(\{n_k\}) \leq \lambda_0(\{n_k\})$.

To prove (i) we may suppose $\lambda_1 > 0$. Then $|a(n_k)| > 0$ for $n_k \in E, k > k_0$. Write $\xi = \lambda_1 - \epsilon$ if $\lambda_1 < \infty, \xi = H$ if $\lambda_1 = \infty$. Then for $N_0 < N < M$,

$$\sum_{k=N}^{M} \log \left| \frac{a(n_{k-1})}{a(n_{k})} \right| < \sum_{k=N}^{M} (n_{k} - n_{k-1}) \beta^{-1} \left(\frac{\alpha(n_{k-1})}{\xi} \right)$$
$$< \beta^{-1} \left(\frac{\alpha(n_{M-1})}{\xi} \right) (n_{M} - n_{N-1}).$$

Hence

$$(1+o(1))\left(\frac{1}{n_M}\log\frac{1}{|a(n_M)|}\right) < \beta^{-1}\left(\frac{\alpha(n_{M-1})}{\xi}\right),$$

and (i) follows.

(ii) If $\{n_k\}$ is the range of v(r, f), then $\lambda = \lambda_1(\{n_k\})$.

. . . .

Let

$$\eta(n_k) = \left| \frac{a(n_{k-1})}{a(n_k)} \right|^{1/(n_k - n_{k-1})} \qquad (k > k_0).$$

Then for $\eta(n_k) \leq r < \eta(n_{k+1}), \mu(r, f) = |a(n_k)| r^{n_k}, \nu(r, f) = n_k$. Further $\eta(n_k) < \eta(n_k + 1) = \cdots = \eta(n_{k+1})$. In the interval $(\eta(n_k), \eta(n_k + 1)), \alpha(\nu(r))/\beta(\log r) \downarrow$ and

$$\lambda = \liminf_{r \to \infty} \frac{\alpha(\nu(r))}{\beta(\log r)} = \liminf_{k \to \infty} \frac{\alpha(n_k)}{\beta\{\log(\eta(n_k+1)-h)\}}$$

where h > 0 is sufficiently small. We now use (H, ii) and obtain (ii).

(iii) For any sequence $\{n_k\}, \lambda_0(\{n_k\}) \leq \lambda$.

The proof is similar to that of Theorem 2(i) and omitted. The theorem follows from (i)–(iii).

THEOREM 5. Let $f(x) \in C[-1, 1]$ and suppose that f(x) is not a polynomial and (1.2) holds. Then f(x) is the restriction to [-1, 1] of an entire function f(z) and

$$\lambda(\alpha, \beta, f) = \sup_{\{n_k\}} \left\{ \liminf_{k \to \infty} \alpha(n_{k-1}) / \beta\left(\frac{1}{n_k} \log \frac{1}{E(n_k)}\right) \right\}$$
$$= \sup_{\{n_k\}} \left\{ \liminf_{k \to \infty} \alpha(n_{k-1}) / \beta\left(\frac{1}{n_k - n_{k-1}} \log \left|\frac{E(n_{k-1})}{E(n_k)}\right| \right) \right\}.$$

The proof follows immediately from (4.6) and Theorem 4 and is omitted.

REFERENCES

- 1. S. K. BALASOV, The connection of growth of an entire function of generalized order with the coefficients of its power series expansion and the root distribution, (Russian) *lzv. Vyss. Ucebn. Zaved. Matematika* 8 (123), (1972), 10–18; MR. 48, No. 532.
- S. BERNSTEIN, "Leçons sur les propriétés extrémales et la meilleure approximation des fonctions analytiques d'une variable réelle," Gauthier-Villars, Paris, 1926.
- 3. R. P. BOAS, JR., "Entire Functions," Academic Press, New York, 1954.
- 4. O. P. JUNEJA, Approximation of an entire function, J. Approximation Theory 11 (1974), 343–349.
- G. G. LORENTZ, "Approximation of Functions," Holt, Rinehart & Winston, New York, 1966.
- G. MEINARDUS, "Approximation of Functions: Theory and Numerical Methods," Springer–Verlag, Berlin, 1967.
- A. R. REDDY, Approximation of an entire function, J. Approximation Theory 3 (1970), 128–137.
- A. R. REDDY, Best polynomial approximation to certain entire functions, J. Approximation Theory 5 (1972), 97–112.
- 9. D. SATO, On the rate of growth of entire functions of fast growth, Bull. Amer. Math. Soc. 69 (1963), 411-414.
- 10. A. SCHÖNAGE, Über das Wachstum zusammengesetzter Funktionen, Math. Zeit. 73 (1960), 22-44.
- M. N. SEREMETA, On the connection between the growth of the maximum modulus of an entire function and the moduli of the coefficients of its power series expansion, *Amer. Math. Soc. Transl.* (2), 88 (1970), 291–301.
- 12. S. M. SHAH AND M. ISHAQ, On the maximum modulus and the coefficients of an entire series, J. Indian Math. Soc. 16 (1952), 177–182.
- 13. S. M. SHAH, On the lower order of integral functions, Bull. Amer. Math. Soc. 52 (1946), 1046–1052.
- 14. G. VALIRON, "Lectures on the General Theory of Integral Functions," Chelsea, New York, 1949.
- R. S. VARGA, On an extension of a result of S. N. Bernstein, J. Approximation Theory 1 (1968), 176–179.
- J. M. WHITTAKER, The lower order of integral functions, J. London Math. Soc. 8 (1933), 20-27.