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1. INTRODUCTION

(lJ)n = 0,1, ...En(f) = inf \I! - p Ii,
pE1Tn

Let f(x) be a real or complex-valued continuous function defined on
[- 1, 11 and let

where the norm is the sup norm on [-1, 1] and 7Tn denotes the set of all
polynomials p of degree at most n. Bernstein ([2, p. 118]; see also [5, pp. 76­
78; 6, pp. 90-94]) proved that

lim E~/n(f) = 0 0.2)
n->OO

if and only if f(x) is the restriction to [-1,1] of an entire function fez).
Varga [15] obtained results giving the order and type of this entire function.
Reddy [7, 8] studied the order, the lower order, and the different types
(logarithmic type, lower type), and Juneja [4] studied the lower order. These
authors define the order and the lower order by considering the ratio IjMCr)!
[If (j ~ 2; see remarks in this section; see also [9, 12; 7, Section 1]). In this
paper we define the generalized order p(ex, f3,j) and the generalized lower
order A(ex, f3,j) on any entire function f and extend some known results on
entire functions of infinite order. Our definition of p(ex, f3, 1) is essentially due
to Seremeta ([11: Theorem 1]; see also [1]).

Let LO denote the class of functions h satisfying the following conditions
(H, i) and (H, ii);

(H, i) hex) is defined on [a, (0) and is positive strictly increasing, differen-
tiable and tends to 00 as x -?- 00. .

(H, ii) lim h«(1 + IN(x»x) = 1
x-,oo hex) ,

for every function .p(x) such that .p(x) -?- 00 as x -?- 00.
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LetA denote the class of functions h satisfying conditions (H, i) and (H, iii);

(H, iii) lim h(cx) = 1
x->ex> hex) ,

for every c > 0.

Let fez) be any entire function and suppose that a(x) E A, fJ(x) E LO. Write

pea, (3,f) _ l' ISUP a(log M(r,f))
)..(a, (3,f) - r~~ inf (3(log r) , (1.3)

Then p(a, fJ, f) is called the generalized order offand ,X(a, fJ, f) the generalized
lower order of f If we take a(x) = log x, fJ(x) = x we get the familiar
definitions of order [3, p. 8; 14, pp. 32-34] and the lower order [16].

Let /L(r) denote the maximum term of an entire functionf(z) = L::~o anzn,
vCr) the rank of /L(r) and M(r,f) the maximum modulus. In Theorem 1 we
consider the expressions in (1.3) when log M(r,f) is replaced by log/L(r) and
by vCr); and in Theorem 2 we obtain an inequality between the lower order
)..(a, fJ, f) and an expression involving the coefficient an . In Theorem 3 we use
these results to obtain expressions for pea, (3,f) and )..(a, fJ,f) involving the
approximation error En(f). We shall assume in Theorems 1-3 thatfis not a
constant function and that ex(x) E A, fJ(x) E LO.

THEOREM 1. Let fez) be entire. Set F(x, c) = fJ-1(cex(x)), F(x, 1) = F(x).
Iffor some function t/;(x) tending to 00 (howsoever slowly) as x ---+ 00

and if

then

fJ(xt/;(x))/fJ(e X) ---+ 0,

dF(x)(d(log x) = 0(1),

as x ---+ 00,

as x ---+ 00,

(1.4)

(1.5)

. a(log /L(r)). a(v(r))
pea, fJ,f) = hm sup (3(l ) = hm sup (3(l ) , (1.6)

r->ex> og r r->ex> og r

'( fJ f) - I' 'f a(log /L(r)) - I' . f a(v(r)) (1.7)
II ex, " - 1m In (3(1 ) - 1m III (3(1 ) .

r-> '" og r r->ex> og r

THEOREM 2. Let
00

fez) = L anzn

n=O

be an entire function. Then (i)

lim inf a(n)((3 (! log -I_1_,) ~ )..(a, (3, f).
n....;.oo n an

(1.8)

(1.9)
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(ii) Assume that [ an/an+l I is ultimately a nondecreasing function of n
and (1.4) and (1.5) hold. Then there is an equality sign in (1.9).

Remark. If

dF(x, c) = 0(1)
d(log x) , x --+ 00, (1

for every c > 0, then Seremeta [11] has shown that

p(iX, fl,f) = lim sup iX(n)/fl (~log-,_1_,).
n-"J.r:J:) n: an :

(1.11)

THEOREM 3. Let f(x) E C[-I, 1] and let EnCf) be defined by (1.1).
Suppose (1.2) holds. Then f (x) is the restriction to [-1, 1] ofan entire function
fez) and (i)

;"'(iX, fl,f) :?' lim inf iX(n)/fl (~log E 1(.£)).
n->oo n n J

(ii) Assume also (1.10) and (1.4). Then

(1.12)

(1.13)

(iii) Assume further that En(f)/En+1(f) is ultimately a nondecreasing
function ofn. Then there is an equality sign in (1.12).

Remarks. Let lkx denote the kth iterate of the logarithm: IIx = log x,
l/ex = log(l/e-Ix) (k :?' 2).

(i) Let ex(x) = log x, flex) = x, if;(x) = l/ex (k :?' 2). Then F(x, 1) =

log x, the hypotheses of Theorem 1 are satisfied and we get another proof of
Whittaker's theorem [16, Theorem 1].

(ii) If we take iX(X) = log x, flex) = x, we see that Theorem 2 gives
extensions of parts of Theorems 1 and 2 of [12].

(iii) Let ex(x) = lkx, flex) = log x (k :?' 1) then ex E A, fl E LO and
Theorem 3 gives extensions of a theorem of Varga [15, Theorem 1] and some
theorems of Reddy [7; Theorems 1, 2A, 2B]. Note that (1.13) holds whether
p(iX, fl, f) is finite or infinite. If it is infinite then Theorem 3(ii) implies that the
right-side expression in (1.13) is infinite and conversely. A similar remark
applies to (1.6), (1.7), part (ii) of Theorem 2 and part (iii) of Theorem 3.

(iv) By appropriate choices of ex(x), flex) we get some results, proved
[10, 13], from Theorems 1 and 2.
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2. PROOF OF THEOREM 1

Write

82 1· ISUp= 1m
<P2 r->'" inf

8s 1· (sup= 1m l
<Ps r->'" linf

ex(log fL(r»
fJ(log r) ,

ex(v(r»
fJ(log r) .

We prove 82 = 8s, <P2 = <Ps in parts (a), (b) and then complete the rest in
(c) and (d). We shall abbreviate, in Theorems 1 and 2, p(ex, fJ,j) to p and
A(ex, fJ,1) to A.

If j is a polynomial then 8s = <Ps = 0, and using (1.4) we see that 82 =
<P2 = P = A = 0. So we assume thatjis a transcendental entire function.

(a) Since [3, pp. 12-13; 14, pp. 28-32]

log fL(2r) > v(r) log 2,

and fJ E LO, we get 82 ~ 8s, <P2 ~ <Ps •

(b) To prove <P2 ~ <Ps we may assume that <Ps < 00. Given € > 0, there
exists an indefinitely increasing sequence {rn} such that for n > no(E),

(2.1)

Let fk) = f (log log r) and let n1 > no be so large that fl(r) is defined and
positive for r > r n • Let

1

E = {rn In> n1 , F(v(rn» ~ (log log rn) fl (rn)}.

Then for r = rnEE,

ex(log fL(r» - ex(v(r» < (1 + 0(1» ex(v(r) log r) - ex(v(r»
fJ(log r) fJ(log r)

(1 + 0(1» fJ(F(v(r) log r» - fJ(F(v(r»
fJ(log r)

< (1 + 0(1» fJ(F(v(r» + A log log r)
fJ(log r)

e<. (1 + 0(1» fJ«(1 + 0(1»(log log r) fl(r»
~ fJ(log r)

= 0(1) as r = rn(E E) -- 00.
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For r = I'n E CE, (n > nIl,

I ( (I A log log r )) /
ex(log p.(r)) _ ex(v(r)) ::< (1 T 0(1)),8 F(v(r)) 1 --; F(v(r)) - ex(v~r))

,8(log 1') "" ,8(log r)

(1 + 0(1)) ,8(F(v(r)) - ex(v(r))
,8(log 1')

(1 + 0(1)) ex(v(r)) - ex(v(r))
,8(log r)

~ 0(1)(epa + E) = 0(1)

and so ep2 ~ epa . Note that if E (or eE) has only a finite number of elements
then we need consider cE (resp. E) only. The above argument gives also
82~ 8a , if we consider all I' > ro(E) such that

ex(v(r))/,8(log 1') < 8a + E,

and define E = {r I I' > 1'1 ,F(v(r)) ~ (log log 1') o/l(r)}. Hence 82 = 63 ,
ep2 = epa·

(c) Since ex(log M(r)) ?: ex(log p.(r)), we have

(d) We now prove p ~ 82 , ,\ ~ ep2' Since [14, pp. 28-32]

we have

M(r) ~ 3p.(r)v (I' _r_)
vCr) ,

log p.(2er) > v(2r),

r > 1'0'

log v(2r) = o(l)(log p.(2er)),
(2.2)

log M(r) ~ log 3 + log p.(r) + log v(2r) ~ (1 + 0(1)) log fJ-(2er).

Since,8 E LO, ex E A it follows that p ~ 82 • To prove'\ ~ ep2' assume ep2 < w
and let in (2.2) 2er = I'n where {I'n} is such that ex(log fJ-(rn))/,8(log I'n) tends to
</;2 as n --+ 00. Then (2.2) implies that ,\ ~ ep2 . The theorem is proved.

3. PROOF OF THEOREM 2

Write

Po I' l' sup () p. (
1 I 1)\ = 1m . f ex n /t-' - og -I~' .

1\0 n-'>W In n an i
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(i) Iff is a polynomial then Po = 1.0 = p = I. = °and so we assume f
to be a transcendental entire function. We prove 1.0 ~ I.. We may assume
I. < 00. Given e > 0, there exists a sequence {rn};:' such that for r = rn ,

that is
a(log M(r)) < (I. + e) f3(log r),

M(r) < exp{a-l«I. + e) f3(log r))}.

By Cauchy inequality

Iak I ~ M(r)/rk,

we get for r = rn and each k ?o 0,

[ak, [ < exp {a-l«I. + e) f3«(log r))}jrk.

Choose k = [a-l«I. + e) f3«(log rn))], where [xl denotes the integer part
of x. Then

a-l«I. + e) f3(log rn)) - 1 < k ~ a-l«I. + e) f3(log rn)), (3.1)
and

Hence

1 1T log ra;:T ?o (log rn - 1)(1 + 0(1)) = (1 + 0(1)) log rn ,

a(k)/f3 (i log I ;k I) ~ (1 + 0(1)) a(k)/f3(log rn) ~ (1 + 0(1))(1. + e),

where we have used (3.1). Hence 1.0 ~ I..

(ii) Set g(n) = I an/an+! [ . Then g(n) ---* 00 and g(n) > g(n - 1) for an
infinity of n (see cf. [13]). When g(n) > g(n - 1), we have J-t(r) = I an I rn,
vCr) = n for g(n - 1) ~ r < g(n).

Given e > 0, write :A = I. - e if I. < 00, :A = H (an arbritarily large
constant) if I. = 00. Then for r > Ro = Ro(e), vCr) > a-l(:Af3(log r)). Let
Iz I = r > Ro and let am zm1, am zm2, (g(ml - 1) > Ro) be two consecutive

1 2

maximum terms. Then ml ~ m2 - 1. Let ml < n ~ m2 • Then vCr) = ml for
g(ml - 1) ~ r < g(ml)' So

ml = vCr) > a-l(:Af3(log r)) ?o a-l(:Af3(log(g(ml) - d)))

where d is a constant such that °< d < min{I, (g(ml) - g(ml - I))/2}.
Further g(ml) = g(ml + 1) = ... = g(n - 1). Hence (writing a(m) for am)

g(no+ 1) ... g(n - 1) = I a(n~(~ 1) I~ (g(n - I))n-nO-l
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and so

~ (1 + 0(1)) (3-1(Ol(n)/'A).

Consequently

'A ~ (1 + 0(1)) Ol(n)/fJ (~lOg Tb)
and so ,\ ~ '\0 . The proof is complete.

4. PROOF OF THEOREM 3

321

Denote the expression on the right of (1.13) by Po and that on the right of
(1.12) by '\0' By hypothesis (1.2) fez) and g(z) = L:~o EnU) zn are entire
functions. As in Theorem 2, we may assume thatfis not a polynomial. This
assumption implies thatgisnot a polynomial. Now [5, p. 76-78; 15]forr > 1
and n ;;;: 0,

where

(
1'2 - 1 ) ( 1'2 + 1 )

M 2r ,f ~ B(r) ~ M 2~ ,f,

Consequently for I' ;;;: 3 and n ;;;: 0

Further
<X)

B(r) ~ Co + 2r I Ek(!) 1'1',
k~O

where Co is a positive constant. Hence for r ~ 3,

M( ~ ,f) ~ Co + 2rM(r,g)

and so for all large r

M(r,f) ~ 9rM(3r, g)

and

1'>1. (4.1)

(4.2)

cx(log M(r, f)) :s::: 01.«(1 + 0(1)) log M(3r, g))
f1(log r) ~ fJ(log 1') •
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Since j3 E LO, we have

S. M. SHAH

A(a, j3,f) ~ A(a, j3, g); pea, j3,f) ~ pea, j3, g). (4.3)

(i) We prove (1.12). Assume, as we may, that Ao > O. Write A = '\0 - E

if Ao < 00, A = H if Ao = 00. Then for all n > no ,

a(n)jA > j3 (~log En~f))'
that is,

En(f) > l/exp lnj3-1 ( ex~) )1.
Let rn = exp{l + j3-1(a(n)jA)}. By (4.2) we have for rn ~ r ~ rn+1 (n > no,

r > 3)

and

ex(log M(r, f)) >: ex(n) _ (l + 0(1)} ex(n)A
j3(1ogr) y- j3(logrn+1) - a(n + 1)

Hence

(ii.a) By (4.2) we have for r ~ 3

fL(r, g) ~ M(r,f);

and (1.6), (1.7), (4.3), and (4.5) imply that

(4.4)

(4.5)

A(ex, j3, f) = ,\(a, j3, g); pea, j3,f) = pea, j3, g). (4.6)

(ii.b) Since [11; Theorem 1] pea, j3, g) = Po, (1.13) follows from (4.6).

(iii) By Theorem 2(ii) and (4.6), '\0 = A(a, j3, g) = A(a, j3, f).

The proof is complete.

5. THEOREMS 4 AND 5

In what follows we extend j3(x) over (- 00, a) so that j3(x) is nonnegative,
nondecreasing, and continuous over (- 00, a]. (The constant a in (H, i) is
throughout a positive number.) We assume (1.4) and (1.10). (The condition
(1.4) assures that the growth of j3 is not "too slow.") We denote by {n",} a
strictly increasing sequence of positive integers. For convenience of notation
we sometimes write a(n) for an .
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THEOREM 4. Let f be a transcendental entire function defined by (1.8) and
let E = E(f) denote the sequence of positive integers {n/c}~ such that max
{! a(n/C-l)! , ! a(n/c)l} > 0 for k = 2, 3,.... Then

where supremum, in (5.1), is taken over all sequences {n/c}, and in (5.2) over all
sequences {n/c} E E.

Proof. Denote by Ao = Ao({n/c}) the expression in curly brackets on the
right in (5.1) and by Al = A1({n/c}) the similar expression in (5.2). Write
A = A(cx, fJ,j).

(i) If {n/c} E E then A1({n/c}) ~ Ao({n/c}).

To prove (i) we may suppose Al > O. Then I a(n/c) [ > 0 for n/c EO E, k >
Write ~ = Al - E if Al < 00, ~ = H if Al = 00. Then for No < N < AI,

I log Ia(nk_l) I< I (n/c - nk- I
) fJ- I ( cx(n/C_l) )

/c~N I a(n/c) /c~N g ,

< (.1-1 ( cx(nM_l) ) (n - n )
fJ ~ M lV-I.'

Hence

(1 + 0(1)) ( n~ log I a(~M)1 ) < fJ-1
( cx(nt

1
) ),

and (i) follows.

(ii) If{n/c} is the range of vCr, I), then A = A1({nk})'

Let

where h > 0 is sufficiently small. We now use (H, ii) and obtain (ii).

(iii) For any sequence {nl'}' Ao({n/c}) ~ A.
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The proof is similar to that of Theorem 2(i) and omitted.
The theorem follows from (i)-(iii).

THEOREM 5. Letf(x) E C[-l, 1] and suppose thatf(x) is not a polynomial
and (1.2) holds. Thenf(x) is the restriction to [-1, 1] ofan entire function fez)
and

The proof follows immediately from (4.6) and Theorem 4 and is omitted.
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